Фрезерование наклонных плоскостей угловыми фрезами. Фрезерное дело. С.В.Аврутин Как фрезеровать тонкие пластины по плоскости

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Плоскости обычно фрезеруют торцовыми и цилиндрическими фрезами. Диаметр торцовой фрезы D (мм) выбирают в зависимости от ширины В (мм) фрезерования с учетом соотношения D=(1,3...1,8)B. При фрезеровании торцовыми фрезами предпочтение следует отдавать несимметричной схеме резания. Размер смещения (мм) k = (0,03...0,06)D (рис. 5.18).

Фрезерование плоскостей производят в такой последовательности: подводят заготовку под вращающуюся фрезу до легкого касания, затем отводят из-под фрезы, выключают шпиндель станка, устанавливают лимб вертикальной подачи (при фрезеровании плоской поверхности) или поперечной подачи (при фрезеровании плоской торцовой поверхности) на глубину фрезерования, включают шпиндель станка и перемещают вручную стол с заготовкой до касания с фрезой, после чего включают продольную подачу стола.

При обработке цилиндрическими фрезами длина фрезы должна на 10...15 мм перекрывать требуемую ширину обработки. Диаметр фрезы выбирают в зависимости от ширины фрезерования и глубины резания t (мм).

При черновом фрезеровании обычно достигается точность размеров, соответствующая 11 и 12-му квалитетам, при чистовом - 8 и 9-му квалитетам. В отдельных случаях при тонком фрезеровании можно получить точность размеров, соответствующую 6 и 7-му квалитетам. Шероховатость обработанной поверхности колеблется от Rz 80 мкм до Ra 0,63 мкм. Наиболее низкие параметры шероховатости (Ra 1,25...0,63 мкм) получают тонким фрезерованием. Другой метод достижения низких параметров шероховатости плоских поверхностей на заготовках - это применение составных фрез, в корпусах которых закреплены черновые и чистовые резцы. Чистовые резцы устанавливают ниже черновых на величину, равную глубине чистового фрезерования. В корпусе фрезы можно устанавливать один или несколько чистовых резцов. При подаче Sz = 1,5... 2,5 мм/зуб и скорости резания v = 240... 250 м/мин достигается шероховатость поверхности Rz 5...2,5 мкм.

При обработке поверхностей торцовыми фрезами благодаря конструкции крепления инструмента процесс резания происходит спокойнее, чем при фрезеровании цилиндрической фрезой.

Концевыми фрезами можно фрезеровать вертикальные и небольшие горизонтальные плоскости. Применение наборов фрез при фрезеровании плоскостей позволяет повысить производительность процесса обработки и обрабатывать фасонные поверхности. Набор представляет собой группу фрез, установленных и закрепленных на одной оправке.

Плоскую поверхность детали, расположенную под определенным углом к горизонтали, называют наклонной, а наклонную плоскость небольших размеров - скосом.

Для фрезерования наклонных плоскостей и скосов используют следующие инструменты:


При фрезеровании с поворотом на требуемый угол заготовку закрепляют в универсальных тисках или на универсальной плите и поворачивают на угол так, чтобы плоскость, подлежащая обработке, располагалась параллельно поверхности стола.

Фрезерование наклонных плоскостей и скосов торцовыми и концевыми фрезами можно производить, поворачивая на требуемый угол не заготовку, а шпиндель инструмента. Это возможно осуществить на вертикально-фрезерных станках, у которых фрезерная головка со шпинделем поворачивается в вертикальной плоскости.

Фрезерование заготовок с наклонными плоскостями и скосами в условиях серийного и массового производств целесообразно производить в специальных приспособлениях, позволяющих устанавливать и закреплять заготовки без выверки.

Угловыми фрезами обрабатывают небольшие наклонные плоскости и скосы. В этом случае нет необходимости в повороте детали и фрезы.

Погрешность плоскостности при обработке торцовой фрезой возникает, если ось вращения фрезы неперпендикулярна к обрабатываемой поверхности или, иначе, к плоскости стола станка. Плоскость получается вогнутой (рис. 5.20), и тем больше, чем больше угол β и чем меньше диаметр D торцовой фрезы.


При фрезеровании плоскости цилиндрической фрезой (набором фрез) погрешность плоскостности может быть вызвана так называемым подрезанием, которое выражается появлением лунки 1 на обработанной поверхности (рис. 5.21) и является результатом временного прекращения движения подачи, вследствие чего фреза некоторое время работает, вращаясь на одном месте. Упругие силы, действующие между фрезой и заготовкой, стремятся при этом сблизить их, что приводит к непроизвольному появлению лунки («выработки»), и тем большей, чем меньше жесткость системы СИД, чем больше усилие резания и чем дольше находится фреза на одном месте.


Контроль плоскостности обработанной поверхности производят лекальной линейкой. Неплоскостность при обработке торцовых поверхностей проверяют плоским угольником или рейсмасом. Неплоскостностью, или отклонением от плоскостности, называют наибольшее расстояние от реальной обработанной поверхности (плоскости) до прилегающей поверхности в пределах контролируемого участка. Прилегающей называется поверхность, соприкасающаяся с реальной поверхностью и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки обработанной реальной поверхности было минимальным в пределах контролируемого участка.

Наклонные плоскости и скосы контролируют с помощью шаблонов и рейсмасов.

Плоскую поверхность, расположенную под углом к горизонтали, называют наклонной плоскостью . Короткую наклонную плоскость на детали обычно называют скосом .
Фрезеровании наклонных плоскостей и скосов можно производить:
а) с поворотом заготовки на требуемый угол;
б) с поворотом шпинделя станка на требуемый угол;
в) с применением угловой фрезы.
Рассмотрим отдельно каждый способ фрезерования.

Фрезерование с поворотом заготовки

Установка в универсальных тисках . Для установки детали (рис. 105, а) под углом можно использовать универсальные тиски (см. рис. 68, б).


Закрепление детали в универсальных тисках производят, как в обычных машинных тисках. При установке универсальных тисков на нужный угол следует иметь в виду, что подлежащая обработке наклонная плоскость должна быть расположена горизонтально, т. е. параллельно поверхности стола (рис. 105, б).
Установка на универсальной плите . На рис. 106 показана заготовка, установленная на универсальной плите (см. рис. 62, в) для фрезерования наклонной плоскости.

Заготовку крепят к столу универсальной плиты прихватами или болтами, как при закреплении на столе фрезерного станка.
Универсальные тиски и универсальные плиты применяют обычно в инструментальных и ремонтно-механических цехах при обработке единичных деталей и в механических цехах при изготовлении небольших партий изделий.
В инструментальных цехах для обработки наклонных поверхностей и скосов в деталях приспособлений и в штампах находят применение широкоуниверсальные фрезерные станки с наклоняемым столом (мод. 675 и 679). Наклон стола станка на требуемый угол обеспечивает надлежащее положение обрабатываемой поверхности, как при обработке в универсальных тисках и на универсальной плите.
Установка в специальных приспособлениях . При обработке наклонных плоскостей в большой партии одинаковых заготовок обычно применяют специальные приспособления.
На рис. 107, а показано приспособление для фрезерования скосов у слесарных молотков. Опорная плоскость приспособления обеспечивает быструю установку заготовки без разметки под нужным углом.


На рис. 107, б показано приспособление для фрезерования наклонной плоскости клина. В этом приспособлении имеется два скоса. Две заготовки устанавливают в приспособление с двух сторон и фрезеруют одновременно одной цилиндрической фрезой.
Фрезерование наклонных плоскостей с поворотом заготовок на требуемый угол производят цилиндрическими или торцовыми фрезами аналогично фрезерованию горизонтальных плоскостей.

Фрезерование с поворотом шпинделя станка

Вместо поворота заготовки при фрезеровании наклонных плоскостей и скосов можно использовать поворот шпинделя. Это возможно на вертикально-фрезерных станках, у которых фрезерная бабка со шпинделем поворачивается вокруг горизонтальной оси в вертикальной плоскости (см. рис. 9).
Очень удобны для этой цели широкоуниверсальные фрезерные станки типа 6М82Ш (см. рис. 11), у которых вертикальная головка имеет поворот в вертикальной и горизонтальной плоскостях.
Этим же способом можно фрезеровать наклонные плоскости и на горизонтально-фрезерном станке, если станок имеет накладную вертикальную головку.
Накладная вертикальная головка является специальной принадлежностью горизонтально-фрезерного станка. Наличие накладной вертикальной головки позволяет выполнять на горизонтально-фрезерном станке различные работы, обычно выполняемые на вертикально-фрезерном станке. На рис. 108, а показана одна из конструкций накладной вертикальной головки.


Корпус 2 накладной вертикальной головки устанавливается на вертикальных направляющих станины станка и закрепляется болтами 1 . Шпиндель 5 вращается в поворотной части 6 головки. Освободив болты, соединяющие поворотную часть 6 головки с ее корпусом, шпиндель можно повернуть в вертикальной плоскости и поставить под любым углом по шкале 4 . Кольцо 3 служит для съема головки. Вращение от шпинделя станка к шпинделю головки передается при помощи пары цилиндрических зубчатых колес 7 и 8 . Колесо 8 при помощи конуса насаживается на шпиндель горизонтально-фрезерного станка и передает вращение от шпинделя станка колесу 7 , а затем через пару конических колес шпинделю 5 накладной вертикальной головки. В гнездо шпинделя 5 устанавливается фреза.
Благодаря наличию пары конических зубчатых колес шпиндель накладной головки можно повернуть вокруг шпинделя фрезерного станка на 360°, т. е. на полный оборот. Такое устройство накладной вертикальной головки позволяет устанавливать фрезу не только вертикально, но и под любым углом (рис. 108, б). Наличие накладной вертикальной головки значительно расширяет возможность применения горизонтально-фрезерных станков.
На рис. 109, а показана концевая фреза, установленная под углом 60° к вертикали для фрезерования скоса. Нужный угол наклона устанавливают поворотом вертикальной головки до совмещения рисок 0 и 60° на шкале.


На рис. 109, б показана торцовая фреза, установленная под углом 30° к вертикали для фрезерования скоса, угол устанавливают поворотам вертикальной головки до совмещения рисок О и 30° на шкале.

Фрезерование наклонных плоскостей угловыми фрезами

Небольшие наклонные плоскости и скосы можно фрезеровать угловыми фрезами. В этом случае нет необходимости в повороте детали или шпинделя, угол наклона плоскости фрезеруемой детали обеспечивается формой самой фрезы.
Угловые фрезы . На рис. 110, а показана одноугловая фреза, предназначенная для обработки плоскости, наклонной к оси фрезы под определенным углом. Различают одноугловые фрезы с углом Θ, равным 55, 60, 65, 70, 85 и 90°.
Двухугловой называют фрезу, у которой вторая режущая грань фрезерует также наклонную плоскость. Различают
фрезы Двухугловые симметричные (рис. 110, б) и несимметричные (рис. 110, в). Угол наклона δ второй грани несимметричной двухугловой фрезы обычно равен 15, 20 и 25°.


Угловые фрезы изготовляют с остроконечными зубьями.
Фрезерование угловыми фрезами производят на горизонтально-фрезерных станках. Угловые фрезы устанавливают и закрепляют на оправках таким же образом, как цилиндрические.
Режимы резания . При работе угловыми фрезами скорости резания и подачи на зуб назначают меньшими, чем при работе цилиндрическими фрезами, так как условия работы этих фрез значительно труднее.
Пример обработки . Рассмотрим фрезерование двух сопряженных наклонных плоскостей. На рис. 111, а дан чертеж призмы, а на рис. 111, б - эскиз обработки угловой выемки. Для фрезерования необходима двухугловая симметричная фреза с углом наклона граней 45°. Диаметр фрезы примем равным 75 мм . Такая фреза имеет 22 зуба.


Режимы резания: глубина фрезерования t =12 мм , подача 0,03 мм/зуб , скорость резания 11,8 м/мин , что соответствует 50 об/мин .
Выбираем имеющееся на станке 6М82Г число оборотов шпинделя, равное 50-об/мин . Минутная подача при этом должна составлять 0,03X22X50 = 33 мм/мин . Выбираем имеющуюся на станке подачу 31,5 мм/мин . Настраиваем станок на выбранные скорость резания и подачу, производим фрезерование подобно фрезерованию горизонтальных плоскостей. Обработанную плоскость проверяют шаблоном.

Возможный брак при фрезеровании наклонных плоскостей и скосов

При фрезеровании наклонных плоюкостей и скосов цилиндрическими, торцовыми и угловыми фрезами, кроме дефектов по чистоте поверхности и брака по размерам, возможен брак вследствие несоблюдения заданного угла наклона обработанной плоскости.
Причинами такого брака могут быть неверная разметка, неверная установка заготовки, плохая очистка стола станка и тисков от стружки, слабое крепление тисков или поворотного стола под углом и биение фрезы.

Технология фрезерования плоских поверхностей и скосов

Плоскости обычно фрезеруют торцовыми и цилиндрическими фрезами. Диаметр торцовой фрезы D (мм) выбирают в зависимости от ширины В (мм) фрезерования с учетом соотношения D=(1,3...1,8)B. При фрезеровании торцовыми фрезами предпочтение следует отдавать несимметричной схеме резания. Размер смещения (мм) k = (0,03...0,06)D (рисунок -. 5.18).

Фрезерование плоскостей производят в такой последовательности: подводят заготовку под вращающуюся фрезу до легкого касания, затем отводят из-под фрезы, выключают шпиндель станка, устанавливают лимб вертикальной подачи (при фрезеровании плоской поверхности) или поперечной подачи (при фрезеровании плоской торцовой поверхности) на глубину фрезерования, включают шпиндель станка и перемещают вручную стол с заготовкой до касания с фрезой, после чего включают продольную подачу стола. фрезерный станок режущий

При обработке цилиндрическими фрезами длина фрезы должна на 10...15 мм перекрывать требуемую ширину обработки. Диаметр фрезы выбирают в зависимости от ширины фрезерования и глубины резания t (мм).

При черновом фрезеровании обычно достигается точность размеров, соответствующая 11 и 12-му квалитетам, при чистовом -- 8 и 9-му квалитетам. В отдельных случаях при тонком фрезеровании можно получить точность размеров, соответствующую 6 и 7-му квалитетам. Шероховатость обработанной поверхности колеблется от Rz 80 мкм до Ra 0,63 мкм. Наиболее низкие параметры шероховатости (Ra 1,25...0,63 мкм) получают тонким фрезерованием. Другой метод достижения низких параметров шероховатости плоских поверхностей на заготовках -- это применение составных фрез, в корпусах которых закреплены черновые и чистовые резцы. Чистовые резцы устанавливают ниже черновых на величину, равную глубине чистового фрезерования. В корпусе фрезы можно устанавливать один или несколько чистовых резцов. При подаче Sz = 1,5... 2,5 мм/зуб и скорости резания v = 240... 250 м/мин достигается шероховатость поверхности Rz 5...2,5 мкм.

При обработке поверхностей торцовыми фрезами благодаря конструкции крепления инструмента процесс резания происходит спокойнее, чем при фрезеровании цилиндрической фрезой.

Концевыми фрезами можно фрезеровать вертикальные и небольшие горизонтальные плоскости. Применение наборов фрез при фрезеровании плоскостей позволяет повысить производительность процесса обработки и обрабатывать фасонные поверхности. Набор представляет собой группу фрез, установленных и закрепленных на одной оправке.

Плоскую поверхность детали, расположенную под определенным углом к горизонтали, называют наклонной, а наклонную плоскость небольших размеров -- скосом.

Для фрезерования наклонных плоскостей и скосов используют следующие инструменты:

o цилиндрические, торцовые и концевые фрезы с поворотом заготовки на требуемый угол с помощью универсальной поворотной плиты (рис. 5.19, а);


  • o торцовые и концевые фрезы с поворотом фрезы на требуемый угол (рисунок 5.19 - б)
  • o специальные приспособления (рисунок 5.19 -в, г) для обработки цилиндрическими и торцовыми фрезами;
  • o угловые фрезы.

При фрезеровании с поворотом на требуемый угол заготовку закрепляют в универсальных тисках или на универсальной плите и поворачивают на угол так, чтобы плоскость, подлежащая обработке, располагалась параллельно поверхности стола.

Фрезерование наклонных плоскостей и скосов торцовыми и концевыми фрезами можно производить, поворачивая на требуемый угол не заготовку, а шпиндель инструмента. Это возможно осуществить на вертикально-фрезерных станках, у которых фрезерная головка со шпинделем поворачивается в вертикальной плоскости.

Фрезерование заготовок с наклонными плоскостями и скосами в условиях серийного и массового производств целесообразно производить в специальных приспособлениях, позволяющих устанавливать и закреплять заготовки без выверки.

Угловыми фрезами обрабатывают небольшие наклонные плоскости и скосы. В этом случае нет необходимости в повороте детали и фрезы.

Погрешность плоскостности при обработке торцовой фрезой возникает, если ось вращения фрезы неперпендикулярная к обрабатываемой поверхности или, иначе, к плоскости стола станка. Плоскость получается вогнутой (рисунок 5.20), и тем больше, чем больше угол в и чем меньше диаметр D торцовой фрезы.


При фрезеровании плоскости цилиндрической фрезой (набором фрез) погрешность плоскостности может быть вызвана так называемым подрезанием, которое выражается появлением лунки 1 на обработанной поверхности (рисунок 5.21) и является результатом временного прекращения движения подачи, вследствие чего фреза некоторое время работает, вращаясь на одном месте. Упругие силы, действующие между фрезой и заготовкой, стремятся при этом сблизить их, что приводит к непроизвольному появлению лунки («выработки»), и тем большей, чем меньше жесткость системы СИД, чем больше усилие резания и чем дольше находится фреза на одном месте.


Контроль плоскостности обработанной поверхности производят лекальной линейкой. Неплоскостность при обработке торцовых поверхностей проверяют плоским угольником или рейсмасом. Неплоскостностью, или отклонением от плоскостности, называют наибольшее расстояние от реальной обработанной поверхности (плоскости) до прилегающей поверхности в пределах контролируемого участка. Прилегающей называется поверхность, соприкасающаяся с реальной поверхностью и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки обработанной реальной поверхности было минимальным в пределах контролируемого участка.

Наклонные плоскости и скосы контролируют с помощью шаблонов и рейсмасов.

Привет! Вот и новая статья которая называется фрезерование и его основные виды потому, что с нее мы начнем изучение этого не простого метода обработки металла.

Что такое фрезерование?

Фрезерование — это обработка создающая плоские и фасонные поверхности, путем применения такого режущего инструмента как фреза. Можно много сказать еще про этот вид механической обработки но я думаю, что мы с вами поэтапно будем рассматривать все его составляющие. И когда закончим (что очень не скоро:)) вы будете знать про него практически все.

Фрезерование.Основные виды и методы.

Я не хочу грузить вас теорией и скучными определениями которых и так полно во всякой литературе посвященной резанию металлов. Просто хочу пока рассказать про основные виды фрезерования. И так…

Фрезерование цилиндрической фрезой. Ну как уже понятно из названия для данного метода применяется цилиндрическая фреза. Суть метода заключается в обработке плоских поверхностей правильной формы (квадраты,прямоугольники и др.) Углубляться не будем, пока:).

Фрезерование торцевой фрезой. Этот метод в принципе аналогичен предыдущему но разница в том, что тут для получения таких же поверхностей применяется торцевая фреза. В чем их различие разберемся в следующих постах. Так, что не забываем подписываться на обновления блога .

Ф резерование зубчатого колеса. Что качается изготовления зубчатого венца методом фрезерования на горизонтально-фрезерном станке, то скажу вам сразу, что данный метод давно устарел и применяется разве, что в ремонтных цехах так как он не имеет необходимой производительности и качества получения шестерни. К стати получение зубчатых колес мы тоже будем рассматривать:)

Фрезерование уступа дисковой трехсторонней фрезой. Как уже понятно с названия снятие припуска производится трехсторонней дисковой фрезой. Которая называется так потому, что имеет сразу три режущие кромки — по наружному диаметру и сразу с двух торцев. Это позволяет ей фрезеровать уступы как показано на рисунке.

Фрезерование набором двух трехсторонних дисковых фрез. Этот метод похож на предыдущий но разница в том, что в данном случае производится одновременная обработка двумя фрезами, что очень удобно для изготовления лысок на цилиндрических поверхностях.

Фрезерование паза концевой фрезой. Используется данный вид для получения прямобочных пазов различных размеров и конфигураций как на плоских так и цилиндрических деталях.

Фрезерование пазов шлицевой фрезой. Ну тут скажу, что под шлицевыми пазами подразумеваются шлицы. Данный методом тоже устарел так как является низко производительным и не дает достаточной точности получения детали. Деление осуществляется с помощью делительной головки.

Фрезерование фасонной поверхности. Под фасонными поверхностями как вы уже поняли из моего предыдущего поста . Это поверхности которые имеют не совсем правильные «фасонные» формы (эллипсы, сферы и др.). И как следствие для их получения необходимы специальные фрезы которые и называют фасонные (имеющие форму которую необходимо получить после фрезеровки).

Фрезеровка наклонной плоскости. Угловые фрезы тоже работаю по принципу копирования, а именно получаемая наклонная поверхность обеспечивается точностью изготовления режущего инструмента. Этот метод применяется для изготовления направляющих скольжения металлорежущих станков.

Фрезеровка криволинейного контура. С помощью концевой фрезы мы сможем получить практически любой сложный криволинейный контур. Тут фреза описывает обрабатываемую деталь по кривой линии которую нам необходимо получить.

Фрезеровка винтовых канавок. С помощью данного способа фрезерования как видно из предлагаемого эскиза изготавливают сверла, зенкера и другой инструмент имеющий винтовые стружкоотводящие канавки. В основном эти операции выполняются на станках с ЧПУ (в настоящее время).

Разрезание отрезной фрезой. Ну в данном случае название говорит само за себя. С помощью отрезной фрезы можно нарезать металлические бруски различных размеров.

Ну все на сегодня информации пожалуй хватит. Я думаю, что не плохо расписал про фрезерование и его основные виды. Если у вас есть какие то предложения чем можно дополнить данный пост ПИШИТЕ!!!

С вами был Андрей!

Наиболее распространенный метод обработки плоскостей - фрезерование их на горизонтально-, вертикально- и продольно-фрезерных станках, а также на карусельно-фрезерных, барабанно-фрезерных и других станках фрезерной группы. В качестве режущих инструментов применяются цилиндрические, торцовые, дисковые, концевые и другие фрезы.

Плоскости небольшой ширины обрабатывают цилиндрическими фрезами на горизонтально-фрезерных станках.

Фрезерование цилиндрическими, а также дисковыми фрезами может быть выполнено по двум схемам (рис. 3.3):

  • 1) встречное фрезерование, когда направление движения подачи не совпадает с направлением вращения фрезы (рис. 3.3, а);
  • 2) попутное фрезерование, когда направление движения подачи совпадает с направлением вращения фрезы (рис. 3.3, б).

Рис. 3.3.

При встречном фрезеровании сечение среза и нагрузка на зуб увеличиваются постепенно от нуля до максимума при выходе его из контакта с деталью. Резание происходит плавно и спокойно.

При попутном фрезеровании зуб фрезы начинает работу со срезания слоя наибольшей толщины, которая в конце работы уменьшается до нуля.

При обработке заготовок с черной поверхностью попутное фрезерование применять не следует, так как при врезании зуба фрезы в твердую корку происходит преждевременный износ и выход из строя фрезы. При обработке заготовок с чистыми поверхностями попутное фрезерование имеет преимущества перед встречным в отношении как стойкости инструмента, так и шероховатости поверхности.

Данный метод обработки широко используется в единичном и серийном производстве.

Более производительным и точным является торцовое фрезерование. Оно обеспечивает равномерное фрезерование даже при небольших припусках на обработку, так как угол контакта фрезы с заготовкой зависит только от диаметра фрезы и ширины заготовки. Длина дуги контакта здесь значительно больше, чем при фрезеровании цилиндрическими фрезами. Для оснащения сборных торцовых фрез требуется меньше быстрорежущей стали или твердого сплава.

Установка торцовой фрезы непосредственно в шпиндель станка исключает необходимость в применении длинных и недостаточно жестких оправок, неизбежных при работе цилиндрическими насадными фрезами, и позволяет использовать фрезы диаметром до 800... 1000 мм и более.

Инструментальная промышленность выпускает торцовые фрезы нескольких типов. Стандартные торцовые фрезы диаметром 630 мм позволяют обрабатывать плоскости шириной более 400 мм. В практике встречаются торцовые фрезы диаметром 800... 1200 мм, что позволяет фрезеровать поверхности шириной 800 мм.

В настоящее время применяют торцовые фрезы с механическим креплением метало- и минералокерамических вставных ножей круглой и многогранной формы, что значительно повышает их стойкость, а следовательно, и производительность. Эти фрезы обеспечивают шероховатость поверхности R a = 2,5...0,63 мкм.

Широкое распространение получили торцовые фрезы с непе- ретачиваемыми многогранными пластинками из твердого сплава. Конструкции этих фрез позволяют заменять отдельные ножи или весь комплект их непосредственно на станке. В собранном виде фреза имеет достаточно высокую точность: биение по главным режущим кромкам двух смежных ножей не превышает 0,03...0,05 мм, а двух противоположных - 0,06...0,10 мм, торцовое биение 0,06...0,08 мм.

Диаметр D торцовой фрезы определяется из соотношения

где В - ширина фрезерования.

Точность фрезерования зависит от типа станка, режущего инструмента, режима резания и в обычных условиях достигает 9... 11 квалитетов, а шероховатость поверхности R a = 2,5...1,25 мкм.

Чистовое (шабрящее) фрезерование обеспечивает шероховатость поверхности стальных и чугунных деталей до R a = 1,25...0,63 мкм, а деталей из бронзы и алюминиевых сплавов - до R a = 0,32 мкм и отклонение от плоскостности 0,02...0,03 мм на 1 пог. м. Указанные точность и шероховатость поверхности достигаются фрезерованием за 2-3 рабочих хода при глубине резания t = 0,05...0,10 мм, подаче S o = 2...3 мм/об и скорости резания v = 200 м/мин. При обработке стальных деталей инструмент рекомендуется оснащать пластинками твердого сплава марки Т30К4, а чугунных - ВКЗ.

При чистовом фрезеровании ось вертикального шпинделя должна быть установлена под весьма малым углом к направлению подачи (рис. 3.4, а), чтобы след, оставленный зубом фрезы на поверхности детали, представлял собой так называемую полусетку (рис. 3.4, б). В этом случае длина пути резца вдвое меньше, чем при фрезеровании в сетку (рис. 3.4, в). Кроме того, при фрезеровании в полусетку зуб фрезы при каждом обороте фрезы срезает новый слой металла, в то время как при фрезеровании в сетку он скользит по наклепанному слою. Стойкость фрезы при обработке в полусетку выше, чем при фрезеровании в сетку.

Рис. 3.4.

Чистовое фрезерование алюминиевых сплавов осуществляют однозубыми фрезами, а черных и цветных металлов и сплавов - двузубыми ступенчатыми. У двузубых ступенчатых фрез зубья смещены по высоте на 0,05...0,30 мм и несколько отличаются формой заточки. Первый зуб предназначен для снятия основного припуска, а второй (зачистной) - для отделочного резания.

Одним из основных путей повышения производительности при работе на фрезерных станках является усовершенствование технологии путем выбора наиболее рациональной схемы обработки. К этим схемам можно отнести:

  • 1) одновременное фрезерование несколькими фрезами;
  • 2) одновременное фрезерование нескольких деталей;
  • 3) позиционное фрезерование;
  • 4) непрерывное фрезерование.

Одновременное фрезерование несколькими фрезами осуществляется набором фрез, специальными фрезерными станками или многошпиндельными головками.

Наборы фрез в основном применяют при работе на горизонтально-фрезерных станках. Фрезы в этом случае устанавливаются на фрезерной оправке, опирающейся на центр или втулку подвески.

В набор могут входить различные дисковые фрезы (рис. 3.5, а), угловые (рис. 3.5, б), цилиндрические и дисковые (рис.3.5, в), цилиндрические, угловые и фасонные (рис. 3.5, д).

Рис. 3.5.

При обработке набором фрез не только повышается производительность, но и лучше используется станок по мощности, а также возрастает точность фрезерования.

Набор фрез, по существу, представляет собой специальный инструмент. Первоначальная стоимость его велика, заточка гораздо сложнее, чем каждой фрезы в отдельности. При работе набором фрез не представляется возможным использовать каждую из них наиболее рациональным способом, так как при принятой скорости резания число оборотов должно назначаться по фрезе наибольшего диаметра, а подача - по фрезе с наименьшим числом зубьев. Из-за большой разницы в диаметрах фрез затупление и износ их протекают по-разному, поэтому при переточке одной фрезы приходится перетачивать все фрезы набора.

Применять наборы фрез целесообразно в условиях крупносерийного и массового производства.

Одновременное фрезерование нескольких деталей может осуществляться последовательным, параллельным и параллельно-последовательным способом.

При последовательном фрезеровании детали размещаются в ряд друг за другом в направлении подачи.

При параллельном способе фрезерования детали располагаются в ряд перпендикулярно движению подачи и обрабатываются одновременно одной или набором фрез.

При параллельно-последовательном фрезеровании детали устанавливаются рядами как в направлении подачи, так и в перпендикулярном направлении.

Позиционное фрезерование. Различают две основные разновидности этого способа обработки: позиционное фрезерование на специальных или универсальных поворотных столах и приспособлениях и маятниковое фрезерование, не требующее специальных поворотных устройств.

Схема позиционного фрезерования с использованием круглого поворотного стола приведена на рис. 3.6. Набором фрез обрабатывают плоскости четырех квадратных деталей А, Б, В, Г. Вначале дисковые двусторонние фрезы 1 и 2 обрабатывают две плоскости детали А, а фрезы 3 и 4 - две плоскости детали Б. После обработки этих плоскостей стол поворачивается на 90° и деталь Б перемещается в новое положение - становится в позицию для фрезерования двух других плоскостей фрезами / и 2; фрезы 3 и 4 при этом положении стола будут обрабатывать две плоскости детали В. При следующем повороте стола на 90° деталь В устанавливается на место, которое в предыдущей позиции занимала деталь Б. При этом положении стола фрезы 1 и 2 фрезеруют у детали? две последние плоскости. При третьем повороте стола деталь Б попадает на последнюю позицию, где она снимается, а на ее место устанавливается новая заготовка.

Рис. 3.6.

Схема фрезерования с применением маятниковой подачи приведена на рис. 3.7. При рабочей подаче стола от позиции 2 к позиции 3 торцовая фреза обрабатывает торец детали А. После этого направление подачи стола изменяется и он ускоренно перемещается к позиции

4. При рабочей подаче стола от позиции 4 к позиции 5фреза обрабатывает деталь Б. После этого вновь изменяется направление подачи, стол ускоренно подается до позиции 6 и весь цикл повторяется снова. Во время фрезерования детали А обработанная деталь Б снимается, а на ее место устанавливается новая заготовка.

Рис. 3.7.

Непрерывное фрезерование. В крупносерийном и массовом производстве получил распространение высокопроизводительный способ обработки плоскостей - непрерывное фрезерование. Осуществляется оно в большинстве случаев на карусельно-фрезерных или барабанно-фрезерных станках и иногда на вертикально-фрезерных станках с поворотным столом.

На карусельно-фрезерных станках (рис. 3.8, а) фрезеруют детали с размерами обрабатываемых плоскостей примерно до 600 мм. Станок имеет станину 7, две стойки 2, жестко соединенные горизонтальной балкой 3, и траверсу 4. На столе 6 станка устанавливают по кругу приспособления и закрепляют в них заготовки 8. Фрезерование производится при непрерывном вращении стола. При этом осуществляется параллельно-последовательная черновая и чистовая обработка, для чего станок имеет две шпиндельные головки 5 с самостоятельными приводами. Головка 5 смонтирована на траверсе 4. Снятие и установка заготовок 8 на столе производятся без его остановки в секторе рабочего места 7.

В трехшпиндельных карусельно-фрезерных станках (например, мод. 623В) два правых шпинделя с фрезами диаметром до 300 мм предназначены для черновой обработки, а левый с фрезами диаметром до 600 мм - для чистовой.

Так как на карусельно-фрезерных станках отсутствуют механизмы вертикального перемещения стола, а также продольной и поперечной подач, они обладают большей жесткостью, обеспечивают высокую производительность и точность, особенно в отношении параллельности обрабатываемых поверхностей.

Барабанно-фрезерные станки (рис. 3.8, б) предназначены для обработки параллельных плоскостей заготовок одновременно с двух сторон. Заготовки 5 устанавливаются на гранях барабана 4 , укрепленного на валу 3. Барабан вращается от отдельного электродвигателя 2 внутри станины 1. Он может иметь форму четырех-, пяти-, шести-, а иногда и восьмигранника. Фрезы закрепляются на расположенных с двух сторон одношпиндельных или двухшпиндельных бабках 6. Таких бабок по две с каждой стороны: одна для чернового фрезерования, а другая - для чистового. Установка и снятие заготовок производятся на ходу станка, т.е. осуществляется непрерывное фрезерование.

Большая жесткость конструкции станка обеспечивает высокую и стабильную точность размеров между обрабатываемыми плоскостями.



error: Контент защищен !!